Graduationwoot

Dragon Notes

i

\( \newcommand{bvec}[1]{\overrightarrow{\boldsymbol{#1}}} \newcommand{bnvec}[1]{\overrightarrow{\boldsymbol{\mathrm{#1}}}} \newcommand{uvec}[1]{\widehat{\boldsymbol{#1}}} \newcommand{vec}[1]{\overrightarrow{#1}} \newcommand{\parallelsum}{\mathbin{\|}} \) \( \newcommand{s}[1]{\small{#1}} \newcommand{t}[1]{\text{#1}} \newcommand{tb}[1]{\textbf{#1}} \newcommand{ns}[1]{\normalsize{#1}} \newcommand{ss}[1]{\scriptsize{#1}} \newcommand{vpl}[]{\vphantom{\large{\int^{\int}}}} \newcommand{vplup}[]{\vphantom{A^{A^{A^A}}}} \newcommand{vplLup}[]{\vphantom{A^{A^{A^{A{^A{^A}}}}}}} \newcommand{vpLup}[]{\vphantom{A^{A^{A^{A^{A^{A^{A^A}}}}}}}} \newcommand{up}[]{\vplup} \newcommand{Up}[]{\vplLup} \newcommand{Uup}[]{\vpLup} \newcommand{vpL}[]{\vphantom{\Large{\int^{\int}}}} \newcommand{lrg}[1]{\class{lrg}{#1}} \newcommand{sml}[1]{\class{sml}{#1}} \newcommand{qq}[2]{{#1}_{\t{#2}}} \newcommand{ts}[2]{\t{#1}_{\t{#2}}} \) \( \newcommand{ds}[]{\displaystyle} \newcommand{dsup}[]{\displaystyle\vplup} \newcommand{u}[1]{\underline{#1}} \newcommand{tu}[1]{\underline{\text{#1}}} \newcommand{tbu}[1]{\underline{\bf{\text{#1}}}} \newcommand{bxred}[1]{\class{bxred}{#1}} \newcommand{Bxred}[1]{\class{bxred2}{#1}} \newcommand{lrpar}[1]{\left({#1}\right)} \newcommand{lrbra}[1]{\left[{#1}\right]} \newcommand{lrabs}[1]{\left|{#1}\right|} \newcommand{bnlr}[2]{\bn{#1}\left(\bn{#2}\right)} \newcommand{nblr}[2]{\bn{#1}(\bn{#2})} \newcommand{real}[1]{\Ree\{{#1}\}} \newcommand{Real}[1]{\Ree\left\{{#1}\right\}} \newcommand{abss}[1]{\|{#1}\|} \newcommand{umin}[1]{\underset{{#1}}{\t{min}}} \newcommand{umax}[1]{\underset{{#1}}{\t{max}}} \newcommand{und}[2]{\underset{{#1}}{{#2}}} \) \( \newcommand{bn}[1]{\boldsymbol{\mathrm{#1}}} \newcommand{bns}[2]{\bn{#1}_{\t{#2}}} \newcommand{b}[1]{\boldsymbol{#1}} \newcommand{bb}[1]{[\bn{#1}]} \) \( \newcommand{abs}[1]{\left|{#1}\right|} \newcommand{ra}[]{\rightarrow} \newcommand{Ra}[]{\Rightarrow} \newcommand{Lra}[]{\Leftrightarrow} \newcommand{rai}[]{\rightarrow\infty} \newcommand{ub}[2]{\underbrace{{#1}}_{#2}} \newcommand{ob}[2]{\overbrace{{#1}}^{#2}} \newcommand{lfrac}[2]{\large{\frac{#1}{#2}}\normalsize{}} \newcommand{sfrac}[2]{\small{\frac{#1}{#2}}\normalsize{}} \newcommand{Cos}[1]{\cos{\left({#1}\right)}} \newcommand{Sin}[1]{\sin{\left({#1}\right)}} \newcommand{Frac}[2]{\left({\frac{#1}{#2}}\right)} \newcommand{LFrac}[2]{\large{{\left({\frac{#1}{#2}}\right)}}\normalsize{}} \newcommand{Sinf}[2]{\sin{\left(\frac{#1}{#2}\right)}} \newcommand{Cosf}[2]{\cos{\left(\frac{#1}{#2}\right)}} \newcommand{atan}[1]{\tan^{-1}({#1})} \newcommand{Atan}[1]{\tan^{-1}\left({#1}\right)} \newcommand{intlim}[2]{\int\limits_{#1}^{#2}} \newcommand{lmt}[2]{\lim_{{#1}\rightarrow{#2}}} \newcommand{ilim}[1]{\lim_{{#1}\rightarrow\infty}} \newcommand{zlim}[1]{\lim_{{#1}\rightarrow 0}} \newcommand{Pr}[]{\t{Pr}} \newcommand{prop}[]{\propto} \newcommand{ln}[1]{\t{ln}({#1})} \newcommand{Ln}[1]{\t{ln}\left({#1}\right)} \newcommand{min}[2]{\t{min}({#1},{#2})} \newcommand{Min}[2]{\t{min}\left({#1},{#2}\right)} \newcommand{max}[2]{\t{max}({#1},{#2})} \newcommand{Max}[2]{\t{max}\left({#1},{#2}\right)} \newcommand{pfrac}[2]{\frac{\partial{#1}}{\partial{#2}}} \newcommand{pd}[]{\partial} \newcommand{zisum}[1]{\sum_{{#1}=0}^{\infty}} \newcommand{iisum}[1]{\sum_{{#1}=-\infty}^{\infty}} \newcommand{var}[1]{\t{var}({#1})} \newcommand{exp}[1]{\t{exp}\left({#1}\right)} \newcommand{mtx}[2]{\left[\begin{matrix}{#1}\\{#2}\end{matrix}\right]} \newcommand{nmtx}[2]{\begin{matrix}{#1}\\{#2}\end{matrix}} \newcommand{nmttx}[3]{\begin{matrix}\begin{align} {#1}& \\ {#2}& \\ {#3}& \\ \end{align}\end{matrix}} \newcommand{amttx}[3]{\begin{matrix} {#1} \\ {#2} \\ {#3} \\ \end{matrix}} \newcommand{nmtttx}[4]{\begin{matrix}{#1}\\{#2}\\{#3}\\{#4}\end{matrix}} \newcommand{mtxx}[4]{\left[\begin{matrix}\begin{align}&{#1}&\hspace{-20px}{#2}\\&{#3}&\hspace{-20px}{#4}\end{align}\end{matrix}\right]} \newcommand{mtxxx}[9]{\begin{matrix}\begin{align} &{#1}&\hspace{-20px}{#2}&&\hspace{-20px}{#3}\\ &{#4}&\hspace{-20px}{#5}&&\hspace{-20px}{#6}\\ &{#7}&\hspace{-20px}{#8}&&\hspace{-20px}{#9} \end{align}\end{matrix}} \newcommand{amtxxx}[9]{ \amttx{#1}{#4}{#7}\hspace{10px} \amttx{#2}{#5}{#8}\hspace{10px} \amttx{#3}{#6}{#9}} \) \( \newcommand{ph}[1]{\phantom{#1}} \newcommand{vph}[1]{\vphantom{#1}} \newcommand{mtxxxx}[8]{\begin{matrix}\begin{align} & {#1}&\hspace{-17px}{#2} &&\hspace{-20px}{#3} &&\hspace{-20px}{#4} \\ & {#5}&\hspace{-17px}{#6} &&\hspace{-20px}{#7} &&\hspace{-20px}{#8} \\ \mtxxxxCont} \newcommand{\mtxxxxCont}[8]{ & {#1}&\hspace{-17px}{#2} &&\hspace{-20px}{#3} &&\hspace{-20px}{#4}\\ & {#5}&\hspace{-17px}{#6} &&\hspace{-20px}{#7} &&\hspace{-20px}{#8} \end{align}\end{matrix}} \newcommand{mtXxxx}[4]{\begin{matrix}{#1}\\{#2}\\{#3}\\{#4}\end{matrix}} \newcommand{cov}[1]{\t{cov}({#1})} \newcommand{Cov}[1]{\t{cov}\left({#1}\right)} \newcommand{var}[1]{\t{var}({#1})} \newcommand{Var}[1]{\t{var}\left({#1}\right)} \newcommand{pnint}[]{\int_{-\infty}^{\infty}} \newcommand{floor}[1]{\left\lfloor {#1} \right\rfloor} \) \( \newcommand{adeg}[1]{\angle{({#1}^{\t{o}})}} \newcommand{Ree}[]{\mathcal{Re}} \newcommand{Im}[]{\mathcal{Im}} \newcommand{deg}[1]{{#1}^{\t{o}}} \newcommand{adegg}[1]{\angle{{#1}^{\t{o}}}} \newcommand{ang}[1]{\angle{\left({#1}\right)}} \newcommand{bkt}[1]{\langle{#1}\rangle} \) \( \newcommand{\hs}[1]{\hspace{#1}} \)

  UNDER CONSTRUCTION

EM: General Analysis Methods

  • [Geom.] – identify the coordinate system that best (1) utilizes symmetry, and (2) facilitates integration & differentiation calculations
  • [Geom.] – identify which quantities along integration path are (1) constant or (2) varying – including unit vectors
  • [Geom.] – distinguish between (1) source, and (2) field quantities in used relations
  • [Sym.] – identify any symmetries in (1) source or (2) field distributions in used coord. sys.
  • [Calc.] – check whether used relations satisfy their underlying assumptions
  • [Calc.] – identify real-time vs. complex functions – using phasor for latter:
  •     >\(H_{y}(z,t)=E_{x}(z,t)/η_c\) is a mistake, as \(η_c\) is complex; convert to phasor first: \(H_{y}(z)=E_{x}(z)/η_{c}\)
  • [BC] – identify all applicable boundary conditions across an interface between two media:

MEDIA

\(\boxed{\mathrm{lossless\ diel.}\mathrm{\to }{\rho }_s=0};\boxed{\mathrm{simple\ med.}\mathrm{\to }\mu ,\epsilon =\mathrm{space\ coord.\ indep.}}\) \(\boxed{\mathrm{lossy\ med.}\mathrm{\to }\mathrm{\sigma }\mathrm{\neq }\mathrm{0}}\mathrm{;}\boxed{\sigma \neq \mathrm{const.}\mathrm{\to }\rho \neq 0};\boxed{\mathrm{source}\ \mathrm{free\ med.}\mathrm{\to }\rho =0,J_{\text{ext}}=0 }\) \(\boxed{\mathrm{noncond./lossless\ med.\ }\mathrm{\to }\mathrm{\sigma }\mathrm{=0,\ }{\rho }_v=0,J_{int}=0,\alpha =0,\beta =k=\omega \sqrt{\mu \epsilon },{\epsilon }'=\epsilon ,{\epsilon }''=0}\) \(\boxed{\mathrm{PEC}\mathrm{\to }\sigma =\infty ,\ \eta =0}\)

E/D-fields

\(\underline{{\rho }_s=\mathrm{any:}}\mathrm{\ }\boxed{E_{1t}=E_{2t}}\ \boxed{{\epsilon }_2D_{1t}={\epsilon }_1D_{2t}}\ \boxed{D_{1n}-D_{2n}={\rho }_s}\) \(\underline{{\rho }_s=0:}\ \ \boxed{D_{1n}=D_{2n}}\ \boxed{E_{1n}=\left(\frac{{\epsilon }_2}{{\epsilon }_1}\right)E_{2n}}\ \boxed{\frac{{\mathrm{tan} \left({\phi }_2\right)\ }}{{\mathrm{tan} \left({\phi }_1\right)\ }}=\frac{{\epsilon }_2}{{\epsilon }_1}}\ \boxed{E_2=E_1{\left[{{\mathrm{sin}}^2 \left({\phi }_1\right)\ }+{\left(\frac{{\epsilon }_1}{{\epsilon }_2}{\mathrm{cos} \left({\phi }_1\right)\ }\right)}^2\right]}^{1/2}}\) \(\underline{\left[\boldsymbol{\#}\boldsymbol{2}\right]\boldsymbol{=}\mathrm{cond.:}}\boldsymbol{\ }\boxed{E_{1t}=E_{2t}=0}\boldsymbol{\ }\boxed{D_{1n}={\rho }_s}\boldsymbol{\ \ }\boxed{D_{2n}=0}\boldsymbol{\ }\boxed{E_{1n}={\rho }_s/{\epsilon }_1\ }\boldsymbol{\ }\) \(\underline{{\rho }_v=\mathrm{any}:}\ \ \boxed{{\boldsymbol{\mathrm{\nabla }}}^2V=-\rho /\epsilon };\ \ \underline{{\rho }_v=0:}\ \ \boxed{{\boldsymbol{\mathrm{\nabla }}}^2V=0}\)

J-field

\(\underline{{\rho }_s=\mathrm{any:}}\mathrm{\ }\boxed{J_{1n}=J_{2n}}\ \boxed{J_{1t}/J_{2t}={\sigma }_1/{\sigma }_2}\ \boxed{\frac{{\mathrm{tan} \left({\phi }_2\right)\ }}{{\mathrm{tan} \left({\phi }_1\right)\ }}=\frac{{\sigma }_2}{{\sigma }_1}}\ \boxed{J_2=J_1{\left[{\left(\frac{{\sigma }_2}{{\sigma }_1}{\mathrm{sin} \left({\phi }_1\right)\ }\right)}^2+{{\mathrm{cos}}^2 \left({\phi }_1\right)\ }\right]}^{1/2}}\) \(\boxed{{\rho }_s=\left({\epsilon }_1\frac{{\sigma }_2}{{\sigma }_1}-{\epsilon }_2\right)E_{2n}=\left({\epsilon }_1-{\epsilon }_2\frac{{\sigma }_1}{{\sigma }_2}\right)E_{1n}},\ \widehat{\boldsymbol{\mathrm{n}}}=\mathrm{outward\ from\ }\left[\boldsymbol{\mathrm{\#}}\boldsymbol{\mathrm{2}}\right]\boldsymbol{;}\boldsymbol{\ }\underline{{\rho }_s=0\mathrm{:}}\ \boxed{{\sigma }_2/{\sigma }_1={\epsilon }_2/{\epsilon }_1}\)

B/H-fields

\(\underline{{\sigma }_1,{\sigma }_2\neq \infty \mathrm{:}}\mathrm{\ }\boxed{B_{1n}=B_{2n}}\ \boxed{H_{1n}=\frac{{\mu }_2}{{\mu }_1}H_{2n}}\ \boxed{H_{1t}=H_{2t}}\ \boxed{B_{1t}=\frac{{\mu }_1}{{\mu }_2}B_{2t}}\ \boxed{\frac{{\mathrm{tan} \left({\phi }_2\right)\ }}{{\mathrm{tan} \left({\phi }_1\right)\ }}=\frac{{\mu }_2}{{\mu }_1}}\ \boxed{J_{sn}=0}\) \(\boxed{H_2=H_1{\left[{{\mathrm{sin}}^2 \left({\phi }_1\right)\ }+{\left(\frac{{\mu }_1}{{\mu }_2}{\mathrm{cos} \left({\phi }_1\right)\ }\right)}^2\right]}^{1/2}}\) \(\underline{{\sigma }_2\to \infty :}\ \boxed{{\widehat{\boldsymbol{n}}}_2\times {\overrightarrow{\boldsymbol{H}}}_1={\overrightarrow{\boldsymbol{J}}}_s,\ H_{2t}=0}\boldsymbol{\ \ }\boxed{B_{1n}=0,\ B_{2n}=0}\)

  • 1 - \(u_{1x}=\omega/\beta_{1x}=\omega/[\beta_1 \sin{\left(\theta_1 \right)}]\); \([λ_{1x}=2π/β_{1x}]\).     2 - \({\overrightarrow{\boldsymbol{E}}}_1 = 0\) for all \(x\) when \(\sin{\left(\beta_1 z \cos{\left(\theta_i \right)}\right)} = 0\)


  • Dragon Notes,   Est. 2018     About

    By OverLordGoldDragon